Challenges in the application of CRISPR-Cas9 for genetic engineering of nile tilapia (oreochromis niloticus): systematic review
Keywords:
CRISPR-Cas9, disease resistance, gene editing, infertility, Nile Tilapia (Oreochromis niloticus)Abstract
Nile tilapia (Oreochromis niloticus) is an important aquaculture commodity in Indonesia, but productivity and disease resistance remain major challenges. CRISPR-Cas9 technology offers the potential to precisely improve growth, disease resistance, and other superior traits in a single generation. This study aims to identify technical, biological, and applied challenges in the application of CRISPR-Cas9 in tilapia and strategies that can be used to optimize gene editing results. The research method was conducted using a systematic literature review (SLR) approach to identify the challenges of applying CRISPR-Cas9 in tilapia genetic engineering. The application of CRISPR-Cas9 faces technical challenges such as mosaicism, off-target effects, and low editing efficiency, which can be overcome by optimizing sgRNA, Cas9 quality, injection methods, and multi-omics approaches. Biological challenges include infertility due to reproductive gene mutations, hormonal imbalances, and genetic compensation phenomena, which can be minimized through conditional knockout, rescue experiments, and dual targets. At the application level, mutants are often difficult to utilize due to reduced viability, so marker-based selection strategies, selection of appropriate target genes, and public regulation and socialization are necessary to support successful implementation. CRISPR-Cas9 has great potential to increase the productivity and resilience of tilapia. Its successful implementation requires an integrated approach that combines technical optimization, attention to biological effects, and application strategies that consider regulations and public acceptance.
References
Badan Pusat Statistik. (2020). Statistik ekspor ikan nila Indonesia 2020. Badan Pusat Statistik Indonesia. https://www.bps.go.id
Basri, L., Nor, R. M., Salleh, A., Md. Yasin, I. S., Saad, M. Z., Abd. Rahaman, N. Y., Barkham. T & Amal, M. N. A. (2020). Co-infections of tilapia lake virus, Aeromonas hydrophila and Streptococcus agalactiae in farmed red hybrid tilapia. Animals, 10(11), 2141. https://doi.org/10.3390/ani10112141
Chen, J., Jiang, D., Tan, D., Fan, Z., Wei, Y., Li, M., & Wang, D. (2017). Heterozygous mutation of eEF1A1b resulted in spermatogenesis arrest and infertility in male tilapia, Oreochromis niloticus. Scientific Reports, 7, 43733. https://doi.org/10.1038/srep43733
Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR–Cas9. Science, 346(6213), 1258096. https://doi.org/10.1126/science.1258096
Feng, R., Fang, L., Cheng, Y., He, X., Jiang, W., Dong, R., Shi, H., Jiang, D., Sun, L., & Wang, D. (2015). Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus). Nature Publishing Group, 5(1), 10131. https://doi.org/10.1038/srep10131
Hadiroseyani, Y., Sharly, A. M., Shafruddin, D., & Vinasyiam, A. (2023). Nursery of red tilapia Oreochromis niloticus in a small-scale aquaponics system with different stocking densities. Jurnal Akuakultur Indonesia, 22(2), 210-219. DOI: 10.19027/jai.22.2.210-219
Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278. https://doi.org/10.1016/j.cell.2014.05.010
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829
Jiang, D.-N., Yang, H.-H., Li, M.-H., Shi, H.-J., Zhang, X.-B., & Wang, D.-S. (2016). gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia. Molecular Reproduction and Development, 83(6), 497–508. https://doi.org/10.1002/mrd.22642
Jiang, D., Chen, J., Fan, Z., Tan, D., Zhao, J., & Shi, H. (2017). CRISPR / Cas9-induced disruption of wt1a and wt1b reveals their di ff erent roles in kidney and gonad development in Nile tilapia. Developmental Biology, 428(1), 63–73. https://doi.org/10.1016/j.ydbio.2017.05.017
Jie, M., Ma, H., Zhou, L., Wu, J., Li, M., Liu, X., & Wang, D. (2020). Regulation of Female Folliculogenesis by Tsp1a in Nile Tilapia (Oreochromis niloticus). International Journal of Molecular Sciences, 21(16). https://doi.org/10.3390/ijms21165893
Jin, Y. H., Liao, B., Migaud, H., & Davie, A. (2020). Physiological impact and comparison of mutant screening methods in piwil2 KO founder Nile tilapia produced by CRISPR/Cas9 system. Scientific Reports, 10(1), 12600. https://doi.org/10.1038/s41598-020-69421-0
Li, L., Wu, Y., Zhao, C., Miao, Y., Cai, J., Song, L., Wei, J., Chakraborty, T., Wu, L., Wang, D., & Zhou, L. (2021). The role of StAR2 gene in testicular differentiation and spermatogenesis in Nile tilapia (Oreochromis niloticus). The Journal of Steroid Biochemistry and Molecular Biology, 214, 105974. https://doi.org/https://doi.org/10.1016/j.jsbmb.2021.105974
Li, M., Dai, S., Liu, X., Xiao, H., & Wang, D. (2021). A detailed procedure for CRISPR/Cas9-mediated gene editing in tilapia. Hydrobiologia, 848(16), 3865-3881.
Li, M., Liu, X., Dai, S., Xiao, H., Qi, S., Li, Y., Zheng, Q., Jie, M., Cheng, C. H. K., & Wang, D. (2020). Regulation of spermatogenesis and reproductive capacity by Igf3 in tilapia. Cellular and Molecular Life Sciences : CMLS, 77(23), 4921–4938. https://doi.org/10.1007/s00018-019-03439-0
Li, M., Liu, X., Dai, S., Xiao, H., & Wang, D. (2019). High Efficiency Targeting of Non-coding Sequences Using CRISPR / Cas9 System in Tilapia. 9(January), 287–295. https://doi.org/10.1534/g3.118.200883
Li, M., Sun, Y., Zhao, J., Shi, H., Zeng, S., Ye, K., Jiang, D., Zhou, L., Sun, L., Tao, W., Nagahama, Y., Kocher, T. D., & Wang, D. (2015). A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus. PLoS Genetics, 11(11), e1005678. https://doi.org/10.1371/journal.pgen.1005678
Li, M., Yang, H., Zhao, J., Fang, L., Shi, H., Li, M., Sun, Y., Zhang, X., Jiang, D., Zhou, L., & Wang, D. (2014). Efficient and Heritable Gene Targeting. Genetics, 197(June), 591–599. https://doi.org/10.1534/genetics.114.163667
Liu, X., Xiao, H., Jie, M., Dai, S., Wu, X., Li, M., & Wang, D. (2020). Amh regulate female folliculogenesis and fertility in a dose-dependent manner through Amhr2 in Nile tilapia. Molecular and Cellular Endocrinology, 499(September 2019), 110593. https://doi.org/10.1016/j.mce.2019.110593
Omasaki, S. K., & Setyawan, P. (2017). Economic values of growth rate, feed intake, feed conversion ratio, mortality, and uniformity for Nile tilapia (Oreochromis niloticus). Aquaculture, 481, 1–10. https://doi.org/10.1016/j.aquaculture.2017.04.013
Queiróz, G. A. d., Silva, T. M. F. e., & Leal, C. A. G. (2024). Duration of Protection and Humoral Immune Response in Nile Tilapia (Oreochromis niloticus L.) Vaccinated against Streptococcus agalactiae. Animals, 14(12), 1744. https://doi.org/10.3390/ani14121744
Sarjito, R., Sukenda, & Nuryati, S. (2021). Outbreaks of streptococcosis and mortality in farmed tilapia (Oreochromis niloticus) in Central Java, Indonesia. Aquaculture, 541, 736832. https://doi.org/10.1016/j.aquaculture.2021.736832
Segev-Hadar, A., Slosman, T., Rozen, A., Sherman, A., Cnaani, A., & Biran, J. (2021). Genome Editing Using the CRISPR-Cas9 System to Generate a Solid-Red Germline of Nile Tilapia (Oreochromis niloticus). The CRISPR Journal, 4(4), 583–594. https://doi.org/10.1089/crispr.2020.0115
Suhermanto, A., Rahayu, D. A., & Nuryati, S. (2020). Prevalence and impact of Streptococcus agalactiae infection in Nile tilapia cultured in Cirata Reservoir, West Java. Jurnal Akuakultur Indonesia, 19(2), 150–160. https://doi.org/10.19027/jai.19.2.150-160
Taukhid, T., Lusiastuti, A. M., Novita, H., Caruso, D., & Avarre, J.-C. (2024). Resistance of Indonesian tilapia strains (Oreochromis niloticus) to Tilapia Lake Virus Disease (TiLVD). European Association of Fish Pathologists Bulletin, 44(1), 1–10. https://doi.org/10.48045/001c.118454
Tao, Wenjing and Shi, Hongjuan and Yang, Jing and Diakite, Hamidou and Kocher, Thomas D and Wang, D. (2020). Homozygous mutation of foxh1 arrests oogenesis causing infertility in female Nile tilapia. Biology of Reproduction, 102(3), 758–769.
Wei, L., Tang, Y., Zeng, X., Li, Y., Zhang, S., Deng, L., Wang, L., & Wang, D. (2022). The transcription factor Sox30 is involved in Nile tilapia spermatogenesis. Journal of Genetics and Genomics, 49(November 2021), 666–676. https://doi.org/10.1016/j.jgg.2021.11.003
Xie, Q.-P., He, X., Sui, Y.-N., Chen, L.-L., Sun, L.-N., & Wang, D.-S. (2016). Haploinsufficiency of SF-1 Causes Female to Male Sex Reversal in Nile Tilapia, Oreochromis niloticus. Endocrinology, 157(6), 2500–2514. https://doi.org/10.1210/en.2015-2049
Yan, L., Feng, H., Wang, F., Lu, B., Liu, X., Sun, L., & Wang, D. (2019). Establishment of three estrogen receptors (esr1, esr2a, esr2b) knockout lines for functional study in Nile tilapia. The Journal of Steroid Biochemistry and Molecular Biology, 191, 105379. https://doi.org/10.1016/j.jsbmb.2019.105379
Yang, L., Li, Y., Wu, Y., Sun, S., Song, Q., Wei, J., Sun, L., Li, M., Wang, D., & Zhou, L. (2020). Rln3a is a prerequisite for spermatogenesis and fertility in male fish. The Journal of Steroid Biochemistry and Molecular Biology, 197, 105517. https://doi.org/10.1016/j.jsbmb.2019.105517
Yang, L., Wu, Y., Su, Y., Zhang, X., Chakraborty, T., Wang, D., & Zhou, L. (2022). Cyp17a2 is involved in testicular development and fertility in male Nile tilapia, Oreochromis niloticus. Frontiers in Endocrinology, 13, 1074921. https://doi.org/10.3389/fendo.2022.1074921
Zhang, X., Wang, H., Li, M., Cheng, Y., Jiang, D., Sun, L., Tao, W., Zhou, L., Wang, Z., & Wang, D. (2014). Isolation of doublesex- and mab-3-related transcription factor 6 and its involvement in spermatogenesis in tilapia. Biology of Reproduction, 91(6), 136. https://doi.org/10.1095/biolreprod.114.121418
Zheng, Q., Xiao, H., Shi, H., Wang, T., Sun, L., Tao, W., Kocher, T. D., Li, M., & Wang, D. (2020). Loss of Cyp11c1 causes delayed spermatogenesis due to the absence of 11-ketotestosterone. The Journal of Endocrinology, 244(3), 487–499. https://doi.org/10.1530/JOE-19-0438